Body Composition Tools for Assessment of Adult Malnutrition at the Bedside
A Tutorial on Research Considerations and Clinical Applications
Corresponding Author
Carrie P. Earthman PhD, RD, LD
Department of Food Science and Nutrition, University of Minnesota–Twin Cities, St Paul, Minnesota
Carrie P. Earthman, PhD, RD, LD, Professor, Department of Food Science & Nutrition, University of Minnesota, Food Science & Nutrition 225, 1334 Eckles Ave, St Paul, MN 55108-6099, USA. Email: [email protected]Search for more papers by this authorCorresponding Author
Carrie P. Earthman PhD, RD, LD
Department of Food Science and Nutrition, University of Minnesota–Twin Cities, St Paul, Minnesota
Carrie P. Earthman, PhD, RD, LD, Professor, Department of Food Science & Nutrition, University of Minnesota, Food Science & Nutrition 225, 1334 Eckles Ave, St Paul, MN 55108-6099, USA. Email: [email protected]Search for more papers by this authorAbstract
Because of the key role played by the body's lean tissue reserves (of which skeletal muscle is a major component) in the response to injury and illness, its maintenance is of central importance to nutrition status. With the recent development of the Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition diagnostic framework for malnutrition, the loss of muscle mass has been recognized as one of the defining criteria. Objective methods to evaluate muscle loss in individuals with acute and chronic illness are needed. Bioimpedance and ultrasound techniques are currently the best options for the clinical setting; however, additional research is needed to investigate how best to optimize measurements and minimize error and to establish if these techniques (and which specific approaches) can uniquely contribute to the assessment of malnutrition, beyond more subjective evaluation methods. In this tutorial, key concepts and statistical methods used in the validation of bedside methods to assess lean tissue compartments are discussed. Body composition assessment methods that are most widely available for practice and research in the clinical setting are presented, and clinical cases are used to illustrate how the clinician might use bioimpedance and/or ultrasound as a tool to assess nutrition status at the bedside. Future research needs regarding malnutrition assessment are identified.
Supporting Information
Filename | Description |
---|---|
jpen0787-sup-0001.pdfPDF document, 114.8 KB | Supplementary data |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
Reading List
- 1Ellis KJ. Human body composition: in vivo methods. Physiol Rev. 2000; 80(2): 649-680.
- 2Baracos V, Caserotti P, Earthman CP et al. Advances in the science and application of body composition measurement. JPEN J Parenter Enteral Nutr. 2012; 36(1): 96-107.
- 3Prado CMM, Heymsfield SB. Lean tissue imaging: a new era for nutritional assessment and intervention. JPEN Parenter Enteral Nutr. 2014; 38: 940-953.
- 4Mulasi U, Kuchnia AJ, Cole AJ, Earthman CP. Bioimpedance at the bedside: current applications, limitations, and opportunities. Nutr Clin Pract. 2015; 30(2): 180-193.
- 5Matthie JR. Bioimpedance measurements of human body composition: critical analysis and outlook. Expert Rev Med Devices. 2008; 5(2): 239-261.
- 6Kyle UG, Bosaeus I, De Lorenzo AD et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr. 2004; 23(5): 1226-1243.
- 7Kyle UG, Bosaeus I, De Lorenzo AD et al. Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin Nutr. 2004; 23(6): 1430-1453.
- 8Lukaski HC. Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur J Clin Nutr. 2013; 67(suppl 1): S2-S9.
- 9Kushner RF, Gudivaka R, Schoeller DA. Clinical characteristics influencing biolectrical impedance analysis measurements. Am J Clin Nutr. 1996; 64(suppl): 423S-427S.
- 10Norman K, Stobäus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis: clinical relevance and applicability of impedance parameters. Clin Nutr. 2012; 31(6): 854-861.
References
- 11Hoffer LJ, Bistrian BR. Appropriate protein provision in critical illness : a systematic and narrative review. Am J Clin Nutr. 2012; 96: 591-600.
- 12Biolo G, Toigo G, Ciocchi B et al. Metabolic response to injury and sepsis: changes in protein metabolism. Nutrition. 1997; 13(9): 52S-57S.
- 13Muscaritoli M, Anker SD, Argilés J et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics.” Clin Nutr. 2010; 29(2): 154-159.
- 14Cosquéric G, Sebag A, Ducolombier C, Thomas C, Piette F, Weill-Engerer S. Sarcopenia is predictive of nosocomial infection in care of the elderly. Br J Nutr. 2006; 96: 895-901.
- 15Lieffers JR, Bathe OF, Fassbender K, Winget M, Baracos VE. Sarcopenia is associated with postoperative infection and delayed recovery from colorectal cancer resection surgery. Br J Cancer. 2012; 107(6): 931-936.
- 16Pichard C, Kyle UG, Morabia A, Perrier A, Vermeulen B, Unger P. Nutritional assessment: lean body mass depletion at hospital admission is associated with an increased length of stay. Am J Clin Nutr. 2004; 79(4): 613-618.
- 17Moisey LL, Mourtzakis M, Cotton B et al. Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients. Crit Care. 2013; 17(5): R206.
- 18Montano-Loza AJ, Meza-Junco J, Prado CMM et al. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol. 2012; 10(2): 166-173.
- 19Parsons HA, Baracos VE, Dhillon N, Hong DS, Kurzrock R. Body composition, symptoms, and survival in advanced cancer patients referred to a phase I service. PLoS One. 2012; 7(1): e29330.
- 20Baumgartner RN, Koehler KM, Gallagher D et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998; 147(8): 755-763.
- 21Prado CM, Lieffers JR, McCargar LJ et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008; 9: 629-635.
- 22Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002; 50(5): 889-896.
- 23Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol. 2004; 159(4): 413-421.
- 24Fearon K, Strasser F, Anker SD et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011; 12(5): 489-495.
- 25White J, Guenter P, Jensen G, Malone A, Schofield M. Consensus statement: Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). JPEN J Parenter Enteral Nutr. 2012; 36(3): 275-283.
- 26Malone A, Hamilton C. The Academy of Nutrition and Dietetics/the American Society for Parenteral and Enteral Nutrition consensus malnutrition characteristics: application in practice. Nutr Clin Pract. 2013; 28(6): 639-650.
- 27Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing. 2010; 39(4): 423.
- 28Yamada Y, Schoeller D, Nakamura E, Morimoto T, Kimura M, Oda S. Extracellular water may mask actual muscle atrophy during aging. J Gerontol A Biol Sci Med Sci. 2010; 65(5): 510-516.
- 29Sheean PM, Peterson SJ, Gomez Perez S et al. The prevalence of sarcopenia in patients with respiratory failure classified as normally nourished using computed tomography and subjective global assessment. JPEN J Parenter Enteral Nutr. 2014; 38(7): 873-879.
- 30Detsky A, McLaughlin JR, Baker J et al. What is subjective global assessment of nutritional status? JPEN J Parenter Enteral Nutr. 1987; 11: 8-13.
- 31Prado CMM, Wells JCK, Smith SR, Stephan BCM, Siervo M. Sarcopenic obesity: a critical appraisal of the current evidence. Clin Nutr. 2012; 31(5): 583-601.
- 32Gallager D, DeLegge M. Body composition (sarcopenia) in obese patients: implications for care in the intensive care unit. JPEN J Parenter Enteral Nutr. 2011; 35(1): 21S-28S.
- 33Martin L, Birdsell L, Macdonald N et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013; 31(12): 1539-1547.
- 34Heymsfield SB, Wang Z, Baumgartner RN, Ross R. Human body composition: advances in models and methods. Annu Rev Nutr. 1997; 17: 527-558.
- 35Pietrobelli A, Heymsfield SB, Wang ZM, Gallagher D. Multi-component body composition models: recent advances and future directions. Eur J Clin Nutr. 2001; 55: 69-75.
- 36Wang Z, Deurenberg P, Wang W, Pietrobelli A, Baumgartner RN, Heymsfield SB. Hydration of fat-free body mass: new physiological modeling approach. Am J Physiol. 1999; 276(6, pt 1): E995-E1003.
- 37Das SK, Roberts SB, Kehayias JJ et al. Body composition assessment in extreme obesity and after massive weight loss induced by gastric bypass surgery. Am J Physiol Endocrinol Metab. 2003; 284(6): E1080-E1088.
- 38Leone PA, Gallagher D, Wang J, Heymsfield SB. Relative overhydration of fat-free mass in postobese versus never-obese subjects. Ann N Y Acad Sci. 2000; 904: 514-519.
- 39Prado CMM, Heymsfield SB. Lean tissue imaging: a new era for nutritional assessment and intervention. JPEN J Parenter Enteral Nutr. 2014; 38: 940-953.
- 40Moore FD, Boyden CM. Body cell mass and limits of hydration of the fat-free body: their relation to estimated skeletal weight. Ann N Y Acad Sci. 1963; 110: 62-71.
- 41Wang Z, St-Onge M-P, Lecumberri B et al. Body cell mass: model development and validation at the cellular level of body composition. Am J Physiol Endocrinol Metab. 2004; 286(1): E123-E128.
- 42Shizgal HM. Nutritional assessment with body composition measurements by multiple isotope dilution. JPEN J Parenter Enteral Nutr. 1990; 17(3)(suppl): 9-17.
- 43Earthman C, Traughber D, Dobratz J, Howell W. Bioimpedance spectroscopy for clinical assessment of fluid distribution and body cell mass. Nutr Clin Pract. 2007; 22(4): 389-405.
- 44Gallagher D, Visser M, Wang Z, Harris T, Pierson RN, Heymsfield SB. Metabolically active component of fat-free body mass: influences of age, adiposity, and gender. Metabolism. 1996; 45(8): 992-997.
- 45Pierson RN, Wang J, Thornton J, Heymsfield S. The quality of the body cell mass—1996. Are we ready to measure it? Appl Radiat Isot. 1998; 49(5): 429-435.
- 46Shizgal HM. Nutritional assessment with body composition measurements. JPEN J Parenter Enteral Nutr. 1987; 11(5)(suppl): 42S-47S.
- 47Beddoe A, Streat S, Hill G. Hydration of fat-free body in protein-depleted patients. Am J Physiol. 1985; 249(2, pt 1): E227-E233.
- 48James HM, Dabek JT, Chettle DR et al. Whole body cellular and collagen nitrogen in healthy and wasted man. Clin Sci (Lond). 1984; 67: 73-82.
- 49Lee SY, Gallagher D. Assessment methods in human body composition. Curr Opin Clin Nutr Metab Care. 2008; 11(5): 566-572.
- 50Baracos V, Caserotti P, Earthman CP et al. Advances in the science and application of body composition measurement. JPEN J Parenter Enteral Nutr. 2012; 36(1): 96-107.
- 51Ludbrook J. Comparing methods of measurement. Clin Exp Pharmacol Physiol. 1997; 24(2): 193-203.
- 52Ulijaszek SJ, Kerr DA. Anthropometric measurement error and the assessment of nutritional status. Br J Nutr. 1999; 82: 165.
- 53Lohman T, Pollock M, Slaughter M, Brandon L, Boileau R. Methodological factors and the prediction of body fat in female athletes. Med Sci Sports Exerc. 1984; 16(1): 92-96.
- 54Jackson AS. Research design and analysis of data procedures for predicting body density. Med Sci Sports Exerc. 1984; 16(6): 616-620.
- 55Bosy-Westphal A, Schautz B, Later W, Kehayias J, Gallagher D, Müller M. What makes a BIA equation unique? Validity of eight-electrode multifrequency BIA to estimate body composition in a healthy adult population. Eur J Clin Nutr. 2013; 67(suppl 1): S14-S21.
- 56Earthman CP, Matthie JR, Reid PM, Harper IT, Ravussin E, Howell WH. A comparison of bioimpedance methods for detection of body cell mass change in HIV infection. J Appl Physiol. 2000; 88(3): 944-956.
- 57Cox-Reijven PL, Soeters PB. Validation of bio-impedance spectroscopy: effects of degree of obesity and ways of calculating volumes from measured resistance values. Int J Obes Relat Metab Disord. 2000; 24(3): 271-280.
- 58Cox-Reijven PLM, van Kreel B, Soeters PB. Accuracy of bioelectrical impedance spectroscopy in measuring changes in body composition during severe weight loss. JPEN J Parenter Enteral Nutr. 2002; 26(2): 120-127.
- 59Mager JR, Sibley SD, Beckman TR, Kellogg TA, Earthman CP. Multifrequency bioelectrical impedance analysis and bioimpedance spectroscopy for monitoring fluid and body cell mass changes after gastric bypass surgery. Clin Nutr. 2008; 27(6): 832-841.
- 60Skipper A, Ferguson M, Thompson K, Castellanos VH, Porcari J. Nutrition screening tools: an analysis of the evidence. JPEN J Parenter Enteral Nutr. 2012; 36(3): 292-298.
- 61Tappenden KA, Quatrara B, Parkhurst ML, Malone AM, Fanjiang G, Ziegler TR. Critical role of nutrition in improving quality of care: an interdisciplinary call to action to address adult hospital malnutrition. JPEN J Parenter Enteral Nutr. 2013; 37(4): 482-497.
- 62Zou KH, Tuncali K, Silverman SG. Correlation and simple linear regression. Radiology. 2003; 227: 617-628.
- 63Taylor R. Interpretation of the correlation coefficient: a basic review. J Diagnostic Med Sonogr. 1990; 6(1): 35-39.
- 64Saracino G, Jennings LW, Hasse JM. Basic statistical concepts in nutrition research. Nutr Clin Pract. 2013; 28(2): 182-193.
- 65Lane DM. Online estatsbook. http://onlinestatbook.com/2/regression/accuracy.html. Accessed January 27, 2015.
- 66Atkinson G, Nevill A. Comment on the use of concordance correlation to assess the agreement between two variables. Biometrics. 1997; 53(2): 775-777.
- 67Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol. 2003; 22: 85-93.
- 68Martin RF. General Deming regression for estimating systematic bias and its confidence interval in method-comparison studies. Clin Chem. 2000; 46(1): 100-104.
- 69Stöckl D, Dewitte K, Thienpont LM. Validity of linear regression in method comparison studies: is it limited by the statistical model or the quality of the analytical input data? Clin Chem. 1998; 44(11): 2340-2346.
- 70Passing H, Bablok W. A new biometrical procedure for testing the equality of measurements from two different analytical methods: application of linear regression procedures for method comparison studies in clinical chemistry, part I. J Clin Chem Clin Biochem. 1983; 21(11): 709-720.
- 71Passing H, Bablok W. Comparison of several regression procedures for method comparison studies and determination of sample sizes: application of linear regression procedures for method comparison studies in clinical chemistry, part II. J Clin Chem Clin Biochem. 1984; 22(6): 431-445.
- 72Bilic-Zulle L. Lessons in biostatistics comparison of methods: Passing and Bablok regression. Biochem Med. 2011; 21(3): 49-52.
- 73Bablok W, Passing H. Application of statistical procedures in analytical instrument testing. J Automat Chem. 1985; 7(2): 74-79.
- 74Linnet K. Evaluation of regression procedures for methods comparison studies. Clin Chem. 1993; 39(3): 424-432.
- 75Cornbleet PJ, Gochman N. Incorrect least-squares regression coefficients in method-comparison analysis. Clin Chem. 1979; 25(3): 432-438.
- 76Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989; 45(1): 255-268.
- 77Chinchilli VM, Martel JK, Kumanyika S, Lloyd T. A weighted concordance correlation coefficient for repeated measurement designs. Biometrics. 1996; 52(1): 341-353.
- 78King TS, Chinchilli VM, Carrasco JL. A repeated measures concordance correlation coefficient. Stat Med. 2007; 26(16): 3095-3113.
- 79Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999; 8(99): 135-160.
- 80Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986; 1(8476): 307-310.
- 81Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009; 41(1): 3-12.
- 82Hopkins WG. Bias in Bland-Altman but not regression validity analyses. Sportscience. 2004; 8: 42-26.
- 83Hanneman SK. Design, analysis and interpretation of method-comparison studies. AACN Adv Crit Care. 2008; 19(2): 223-234.
- 84Ludbrook J. Confidence in Altman-Bland plots: a critical review of the method of differences. Clin Exp Pharmacol Physiol. 2010; 37(2): 143-149.
- 85Ward LC. Bioelectrical impedance validation studies: alternative approaches to their interpretation. Eur J Clin Nutr. 2013; 67(suppl 1): S10-S13.
- 86Cecconi M, Rhodes A, Poloniecki J, Della Rocca G, Grounds RM. Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies—with specific reference to the measurement of cardiac output. Crit Care. 2009; 13: 201.
- 87Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput. 1999; 15: 85-91.
- 88Ellis KJ. Human body composition: in vivo methods. Physiol Rev. 2000; 80(2): 649-680.
- 89Schlosser K, Kehayias J, Tegenkamp M, Schoeller D. In-vivo and in-vitro bromide equilibration time course in adults and sample handling effect. Int J Body Compos Res. 2009; 7(4): 141-146.
- 90Trabulsi J, Troiano R, Subar A et al. Precision of the doubly labeled water method in a large-scale application: evaluation of a streamlined-dosing protocol in the Observing Protein and Energy Nutrition (OPEN) study. Eur J Clin Nutr. 2003; 57(11): 1370-1377.
- 91Schoeller D, van Santen E, Peterson D, Dietz W, Jaspan J, Klein P. Total body water measurement in humans with 0 and H labeled water. Am J Clin Nutr. 1980; 33(12): 2686-2693.
- 92 International Atomic Energy Agency. Introduction to Body Composition Assessment Using the Deuterium Dilution Technique With Analysis of Urine Samples by Isotope Ratio Mass Spectrometry. Vienna, Austria: Author; 2010. IAEA Human Health Series 13.
- 93 International Atomic Energy Agency. Introduction to Body Composition Assessment Using the Deuterium Dilution Technique With Analysis of Saliva Samples by Fourier Transform Infrared Spectrometry. Vienna, Austria: Author; 2010. IAEA Human Health Series 12.
- 94Miller E. Bromide space determination using anion-exchange chromatography for measurement of bromide. Am J Clin Nutr. 1989; 50(1): 168-171.
- 95Miller ME, Cappon CJ. Anion-exchange chromatographic determination of bromide in serum. Clin Chem. 1984; 30(5): 781-783.
- 96Kehayias J, Ribeiro S, Skahan A et al. Water homeostasis, frailty and cognitive function in the nursing home. J Nutr Heal Aging. 2012; 16(1): 35-39.
- 97 Nutritional and Health-Related Environmental Studies. International Atomic Energy Agency, Division of Human Health. Hum Heal Ser. 2014. http://www-naweb.iaea.org/nahu/NAHRES/publication.html. Accessed April 19, 2015.
- 98Schoeller DA. Hydrometry. In: SB Heymsfield, TG Lohman, Z Wang, SG Going, eds. Human Body Composition. 2nd ed. Champaign, IL: Human Kinetics; 2005: 35-49.
- 99Schoeller DA, Hnilicka JM. Reliability of the doubly labeled water method for the measurement of total daily energy expenditure in free-living subjects. J Nutr. 1996; 126(1): 348S-354S.
- 100Delmonico MJ, Harris TB, Lee JS et al. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc. 2007; 55(5): 769-774.
- 101Leonard CM, Roza MA, Barr RD, Webber CE. Reproducibility of DXA measurements of bone mineral density and body composition in children. Pediatr Radiol. 2009; 39: 148-154.
- 102Jensen M, Hermann A, Hessov I, Mosekilde L. Components of variance when assessing the reproducibility of body composition measurements using bio-impedance and the Hologic QDR-2000 DXA scanner. Clin Nutr. 1997; 16(2): 61-65.
- 103Dodson S, Baracos VE, Jatoi A et al. Muscle wasting in cancer cachexia: clinical implications, diagnosis, and emerging treatment strategies. Annu Rev Med. 2011; 62: 265-279.
- 104Mourtzakis M, Prado CMM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab. 2008; 33(5): 997-1006.
- 105Ross R, Janssen I. Computed tomography and magnetic resonance imaging. In: SB Heymsfield, TG Lohman, Z Wang, SB Going eds. Human Body Composition. 2nd ed. Champaign, IL: Human Kinetics; 2005: 89-108.
- 106Kyle UG, Bosaeus I, De Lorenzo AD et al. Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin Nutr. 2004; 23(6): 1430-1453.
- 107Mulasi U, Kuchnia AJ, Cole AJ, Earthman CP. Bioimpedance at the bedside: current applications, limitations, and opportunities. Nutr Clin Pract. 2015; 30(2): 180-193.
- 108Chumlea WC, Guo SS, Kuczmarski RJ et al. Body composition estimates from NHANES III bioelectrical impedance data. Int J Obes Relat Metab Disord. 2002; 26(12): 1596-1609.
- 109Buzzell PR, Pintauro SJ. BIA Interactive Tutorial—Department of Nutrition and Food Sciences, University of Vermont. 2002. nutrition.uvm.edu/bodycomp/bia. Accessed April 23, 2015.
- 110Lukaski HC. Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur J Clin Nutr. 2013; 67(suppl 1): S2-S9.
- 111Kyle UG, Bosaeus I, De Lorenzo AD et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr. 2004; 23(5): 1226-1243.
- 112Matthie JR. Bioimpedance measurements of human body composition: critical analysis and outlook. Expert Rev Med Devices. 2008; 5(2): 239-261.
- 113Jaffrin MY, Morel H. Body fluid volumes measurements by impedance: a review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med Eng Phys. 2008; 30(10): 1257-1269.
- 114Mialich MS, Maria J, Sicchieri F, Afonso A, Junior J. Analysis of body composition: a critical review of the use of bioelectrical impedance analysis. Int J Clin Nutr. 2014; 2(1): 1-10.
- 115Kushner RF, de Vries PM, Gudivaka R. Use of bioelectrical impedance analysis measurements in the clinical management of patients undergoing dialysis. Am J Clin Nutr. 1996; 64(3)(suppl): 503S-509S.
- 116Moon JR, Stout JR, Smith AE et al. Reproducibility and validity of bioimpedance spectroscopy for tracking changes in total body water: implications for repeated measurements. Br J Nutr. 2010; 104(9): 1384-1394.
- 117Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (NHANES) Anthropometry Procedures Manual. 2013. www.cdc.gov/nchs/data/nhanes/nhanes_13_14/2013_Anthropometry.pdf
- 118Kushner RF, Gudivaka R, Schoeller DA. Clinical characteristics influencing bioelectrical impedance analysis measurements. Am J Clin Nutr. 1996; 64(suppl): 423S-427S.
- 119Gonzalez C, Evans J, Smye S, Holland P. Total body water measurement using bioelectrical impedance analysis, isotope dilution and total body potassium: a scoring system to facilitate intercomparison. Eur J Clin Nutr. 2002; 56(4): 326-337.
- 120Organ L, Bradham G, Gore D, Lozier S. Segmental bioelectrical impedance analysis: theory and application of a new technique. J Appl Physiol. 1994; 77(1): 98-112.
- 121Ward LC. Segmental bioelectrical impedance analysis. Curr Opin Clin Nutr Metab Care. 2012; 15(5): 424-429.
- 122Scharfetter H, Monif M, László Z, Lambauer T, Hutten H, Hinghofer-Szalkay H. Effect of postural changes on the reliability of volume estimations from bioimpedance spectroscopy data. Kidney Int. 1997; 51: 1078-1087.
- 123Gudivaka R, Schoeller D, Kushner RF. Effect of skin temperature on multifrequency bioelectrical impedance analysis. J Appl Physiol. 1996; 81(2): 838-845.
- 124Elia M. Body composition by whole-body bioelectrical impedance and prediction of clinically relevant outcomes: overvalued or underused? Eur J Clin Nutr. 2013; 67(suppl 1): S60-S70.
- 125Raimann JG, Zhu F, Wang J et al. Comparison of fluid volume estimates in chronic hemodialysis patients by bioimpedance, direct isotopic, and dilution methods. Kidney Int. 2014; 85(4): 898-908.
- 126Kotler D, Burastero S, Wang J, Pierson R. Prediction of body cell mass, fat-free mass, and total body water with bioelectrical impedance analysis: effects of race, sex, and disease. Am J Clin Nutr. 1996; 64(suppl): 489S-497S.
- 127Kotler DP, Tierney AR, Wang J, Pierson RN. Magnitude of body-cell-mass depletion and the timing of death from wasting in AIDS. Am J Clin Nutr. 1989; 50(3): 444-447.
- 128Kuhlmann MK, Zhu F, Seibert E, Levin NW. Bioimpedance, dry weight and blood pressure control: new methods and consequences. Curr Opin Nephrol Hypertens. 2005; 14(6): 543-549.
- 129Zhou Y-L, Liu J, Sun F et al. Calf bioimpedance ratio improves dry weight assessment and blood pressure control in hemodialysis patients. Am J Nephrol. 2010; 32(2): 109-116.
- 130Zhu F, Kuhlmann MK, Sarkar SKC et al. Adjustment of dry weight in hemodialysis patients using intradialytic continuous multifrequency bioimpedance of the calf. Int J Artif Organs. 2004; 27(2): 104-109.
- 131Wizemann V, Wabel P, Chamney P et al. The mortality risk of overhydration in haemodialysis patients. Nephrol Dial Transplant. 2009; 24(5): 1574-1579.
- 132Wabel P, Moissl U, Chamney P et al. Towards improved cardiovascular management: the necessity of combining blood pressure and fluid overload. Nephrol Dial Transplant. 2008; 23(9): 2965-2971.
- 133O'Lone EL, Visser A, Finney H, Fan SL. Clinical significance of multi-frequency bioimpedance spectroscopy in peritoneal dialysis patients: independent predictor of patient survival. Nephrol Dial Transplant. 2014; 29(7): 1430-1437.
- 134Onofriescu M, Hogas S, Voroneanu L et al. Bioimpedance-guided fluid management in maintenance hemodialysis: a pilot randomized controlled trial. Am J Kidney Dis. 2014; 64(1): 111-118.
- 135Barbosa-Silva MCG, Barros AJD, Post CLA, Waitzberg DL, Heymsfield SB. Can bioelectrical impedance analysis identify malnutrition in preoperative nutrition assessment? Nutrition. 2003; 19(5): 422-426.
- 136Barbosa-Silva MCG, Barros AJD. Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations. Curr Opin Clin Nutr Metab Care. 2005; 8(3): 311-317.
- 137Norman K, Stobäus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis: clinical relevance and applicability of impedance parameters. Clin Nutr. 2012; 31(6): 854-861.
- 138Ellis KJ, Bell SJ, Chertow GM et al. Bioelectrical impedance methods in clinical research: a follow-up to the NIH Technology Assessment Conference. Nutrition. 1999; 15(11-12): 874-880.
- 139Haverkort EB, Reijven PLM, Binnekade JM et al. Bioelectrical impedance analysis to estimate body composition in surgical and oncological patients: a systematic review. Eur J Clin Nutr. 2015; 69(1): 3-13.
- 140Lingwood BE. Bioelectrical impedance analysis for assessment of fluid status and body composition in neonates—the good, the bad and the unknown. Eur J Clin Nutr. 2013; 67(suppl 1): S28-S33.
- 141Buchholz AC, Bartok C, Schoeller DA. The validity of bioelectrical impedance models in clinical populations. Nutr Clin Pract. 2004; 19(5): 433-446.
- 142Schoeller DA. Bioelectrical impedance analysis: what does it measure? Ann N Y Acad Sci. 2000; 904: 159-162.
- 143Kyle UG, Genton L, Gremion G, Slosman DO, Pichard C. Aging, physical activity and height-normalized body composition parameters. Clin Nutr. 2004; 23(1): 79-88.
- 144Bosaeus I, Wilcox G, Rothenberg E, Strauss BJ. Skeletal muscle mass in hospitalized elderly patients: comparison of measurements by single-frequency BIA and DXA. Clin Nutr. 2014; 33(3): 426-431.
- 145Kyle UG, Genton L, Karsegard L, Slosman DO, Pichard C. Single prediction equation for bioelectrical impedance analysis in adults aged 20-94 years. Nutrition. 2001; 17(3): 248-253.
- 146Schutz Y, Kyle UUG, Pichard C. Fat-free mass index and fat mass index percentiles in Caucasians aged 18-98 y. Int J Obes Relat Metab Disord. 2002; 26(7): 953-960.
- 147Janssen I, Heymsfield SB, Baumgartner RN et al. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol. 2000; 89: 465-471.
- 148Bosy-Westphal A, Danielzik S, Dorhofer R-P, Later W, Wiese S, Muller M. Phase angle from bioelectrical impedance analysis: population reference values by age, sex, and body mass index. JPEN J Parenter Enteral Nutr. 2006; 30(4): 309-316.
- 149Barbosa-Silva MCG, Barros AJD, Wang J, Heymsfield SB, Pierson RN. Bioelectrical impedance analysis: population reference values for phase angle by age and sex. Am J Clin Nutr. 2005; 82(1): 49-52.
- 150VanItallie T, Yang M-U, Heymsfield S, Funk R, Boileau R. Height-normalized indices of the body's fat-free mass and fat mass: potentially useful indicators of nutritional status. Am J Clin Nutr. 1990; 52: 953-959.
- 151Sun SS, Chumlea WC, Heymsfield SB et al. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am J Clin Nutr. 2003; 77(2): 331-340.
- 152Kyle UG, Schutz Y, Dupertuis YM, Pichard C. Body composition interpretation: contributions of the fat-free mass index and the body fat mass index. Nutrition. 2003; 19(7-8): 597-604.
- 153Meireles MS, Wazlawik E, Bastos JL, Garcia MF. Comparison between nutritional risk tools and parameters derived from bioelectrical impedance analysis with subjective global assessment. J Acad Nutr Diet. 2012; 112(10): 1543-1549.
- 154Van Venrooij LM, de Vos R, Zijlstra E, Borgmeijer-Hoelen MM, van Leeuwen PA, de Mol BA. The impact of low preoperative fat-free body mass on infections and length of stay after cardiac surgery: a prospective cohort study. J Thorac Cardiovasc Surg. 2011; 142(5): 1263-1269.
- 155Haverkort EB, Binnekade JM, de van der Schueren MAE, Gouma DJ, de Haan RJ. Estimation of body composition depends on applied device in patients undergoing major abdominal surgery. Nutr Clin Pract. 2015; 30(2): 249-256.
- 156Schwenk A, Eschner W, Kremer G, Ward LC. Assessment of intracellular water by whole body bioelectrical impedance and total body potassium in HIV-positive patients. Clin Nutr. 2000; 19(2): 109-113.
- 157Ott M, Fischer H, Polat H et al. Bioelectrical impedance analysis as a predictor of survival in patients with human immunodeficiency virus infection. J Acquir Immune Defic Syndr Hum Retrovirol. 1995; 9: 20-25.
- 158Gupta D, Lammersfeld CA, Vashi PG et al. Bioelectrical impedance phase angle as a prognostic indicator in breast cancer. BMC Cancer. 2008; 8: 249.
- 159Gupta D, Lammersfeld CA, Vashi PG et al. Bioelectrical impedance phase angle in clinical practice: implications for prognosis in stage IIIB and IV non–small cell lung cancer. BMC Cancer. 2009; 9: 37.
- 160Gupta D, Lis CG, Dahlk SL, Vashi PG, Grutsch JF, Lammersfeld CA. Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer. Br J Nutr. 2004; 92(6): 957-962.
- 161Gupta D, Lis CG, Dahlk SL et al. The relationship between bioelectrical impedance phase angle and subjective global assessment in advanced colorectal cancer. Nutr J. 2008; 7(1): 7-19.
- 162Colín-Ramírez E, Castillo-Martínez L, Orea-Tejeda A, Vázquez-Durán M, Rodríguez AE, Keirns-Davis C. Bioelectrical impedance phase angle as a prognostic marker in chronic heart failure. Nutrition. 2012; 28: 901-905.
- 163Selberg O, Selberg D. Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. Eur J Appl Physiol. 2002; 86: 509-516.
- 164Maggiore Q, Nigrelli S, Ciccarelli C, Grimaldi C, Rossi GA, Michelassi C. Nutritional and prognostic correlates of bioimpedance indexes in hemodialysis patients. Kidney Int. 1996; 50(6): 2103-2108.
- 165Wirth R, Volkert D, Rösler A, Sieber CC, Bauer JM. Bioelectric impedance phase angle is associated with hospital mortality of geriatric patients. Arch Gerontol Geriatr. 2010; 51: 290-294.
- 166Dittmar M. Reliability and variability of bioimpedance measures in normal adults: effects of age, gender, and body mass. Am J Phys Anthropol. 2003; 122(4): 361-370.
- 167Kyle UG, Genton L, Slosman DO, Pichard C. Fat-free and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years. Nutrition. 2001; 17(7-8): 534-541.
- 168Norman K, Stoba N, Zocher D et al. Cutoff percentiles of bioelectrical phase angle predict functionality, quality of life, and mortality in patients with cancer. J Clin Nutr. 2010; 92(3): 612-619.
- 169Paiva SI, Borges LR, Halpern-Silveira D, Assunção MCF, Barros AJD, Gonzalez MC. Standardized phase angle from bioelectrical impedance analysis as prognostic factor for survival in patients with cancer. Support Care Cancer. 2011; 19(2): 187-192.
- 170Piccoli A, Rossi B, Pillon L, Bucciante G. A new method for monitoring body fluid variation by bioimpedance analysis: the RXc graph. Kidney Int. 1994; 46: 534-539.
- 171Cornish BH, Thomas BJ, Ward LC. Improved prediction of extracellular and total body water using impedance loci generated by multiple frequency bioelectrical impedance analysis. Phys Med Biol. 1993; 38: 337-346.
- 172Sun G, French CR, Martin GR et al. Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. Am J Clin Nutr. 2005; 81(1): 74-78.
- 173Olde Rikkert MG, Deurenberg P, Jansen RW, van'tHof MA, Hoefnagels WH. Validation of multifrequency bioelectrical impedance analysis in monitoring fluid balance in healthy elderly subjects. J Gerontol A Biol Sci Med Sci. 1997; 52(3): M137-M141.
- 174Kim M, Kim H. Accuracy of segmental multi-frequency bioelectrical impedance analysis for assessing whole-body and appendicular fat mass and lean soft tissue mass in frail women aged 75 years and older. Eur J Clin Nutr. 2013; 67(4): 395-400.
- 175Dittmar M, Reber H. Evaluation of different methods for assessing intracellular fluid in healthy older people: a cross-validation study. J Am Geriatr Soc. 2002; 50(1): 104-110.
- 176Deurenberg P, Tagliabue A, Schouten FJ. Multi-frequency impedance for the prediction of extracellular water and total body water. Br J Nutr. 1995; 73(3): 349-358.
- 177Anderson LJ, Erceg DN, Schroeder ET. Utility of multifrequency bioelectrical impedance compared with dual-energy X-ray absorptiometry for assessment of total and regional body composition varies between men and women. Nutr Res. 2012; 32(7): 479-485.
- 178Hannan WJ, Cowen SJ, Plester CE, Fearon KCH, DeBeau A. Comparison of bio-impedance spectroscopy and multi-frequency bio-impedance analysis for the assessment of extracellular and total body water in surgical patients. Clin Sci. 1995; 89(6): 651-658.
- 179Hannan WJ, Cowen SJ, Plester C, Fearon KC. Proximal and distal measurements of extracellular and total body water by multi-frequency bio-impedance analysis in surgical patients. Appl Radiat Isot. 1998; 49(5-6): 621-622.
- 180Lehnert ME, Clarke DD, Gibbons JG et al. Estimation of body water compartments in cirrhosis by multiple-frequency bioelectrical-impedance analysis. Nutrition. 2001; 17(1): 31-34.
- 181Plank LD, Li A. Bioimpedance illness marker compared to phase angle as a predictor of malnutrition in hospitalised patients. Clin Nutr. 2013; 32(suppl 1): S85.
- 182Earthman CP, Kruizenga HM, Weijs PJM. Impedance ratio Z200/Z5 compared to phase angle at 50 kHz better predicts nutritional status and length of stay in hospitalized patients. Int J Obes. 2011; 35(2): S58.
- 183Itobi E, Stroud M, Elia M. Impact of oedema on recovery after major abdominal surgery and potential value of multifrequency bioimpedance measurements. Br J Surg. 2006; 93(3): 354-361.
- 184Valdespino-Trejo A, Orea-Tejeda A, Castillo-Martínez L et al. Low albumin levels and high impedance ratio as risk factors for worsening kidney function during hospitalization of decompensated heart failure patients. Exp Clin Cardiol. 2013; 18(2): 113-117.
- 185Castillo Martínez L, Colín Ramírez E, Orea Tejeda A et al. Bioelectrical impedance and strength measurements in patients with heart failure: comparison with functional class. Nutrition. 2007; 23(5): 412-418.
- 186De Lorenzo A, Andreoli A, Matthie J, Withers P. Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J Appl Physiol. 1997; 82(5): 1542-1558.
- 187Cole K. Membranes, Ions and Impulses: A Chapter of Classical Biophysics. Berkeley: University of California Press; 1972.
- 188Hanai T. Electrical properties of emulsions. In: PH Sherman, ed. Emulsion Science. London, UK: Academic Press; 1968: 354-377.
- 189Matthie JR. Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopy. J Appl Physiol. 2005; 99(2): 780-781.
- 190Ellis KJ, Wong WW. Human hydrometry: comparison of multifrequency bioelectrical impedance with 2H2O and bromine dilution. J Appl Physiol. 1998; 85(3): 1056-1062.
- 191Plank LD, Monk DN, Woollard G, Hill GL. Evaluation of multifrequency bioimpedance spectroscopy for measurement of the extracellular water space in critically ill patients. Appl Radiat Isot. 1998; 49(5-6): 481-483.
- 192Moissl UM, Wabel P, Chamney PW et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas. 2006; 27(9): 921-933.
- 193Chamney PW, Wabel P, Moissl UM et al. A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am J Clin Nutr. 2007; 85(1): 80-89.
- 194Wabel P, Chamney P, Moissl U, Jirka T. Importance of whole-body bioimpedance spectroscopy for the management of fluid balance. Blood Purif. 2009; 27(1): 75-80.
- 195Marcelli D, Usvyat L a., Kotanko P et al. Body composition and survival in dialysis patients: results from an international cohort study [published online April 21, 2015]. Clin J Am Soc Nephrol.
- 196Bellisari A, Roche AF. Anthropometry and ultrasound. In: SB Heymsfield, TG Lohman, Z Wang, SB Going eds. Human Body Composition. 2nd ed. Champaign, IL: Human Kinetics; 2005: 109-127.
- 197Peetrons P. Ultrasound of muscles. Eur Radiol. 2002; 12: 35-43.
- 198Ohata K, Tsuboyama T, Ichihashi N, Minami S. Measurement of muscle thickness as quantitative muscle evaluation for adults with severe cerebral palsy. Phys Ther. 2006; 86(9): 1231-1239.
- 199Campbell IT, Watt T, Withers D et al. Muscle thickness, measured with ultrasound, may be an indicator of lean tissue wasting in multiple organ failure in the presence of edema. Am J Clin Nutr. 1995; 62: 533-539.
- 200Gruther W, Benesch T, Zorn C et al. Muscle wasting in intensive care patients: ultrasound observation of the M. quadriceps femoris muscle layer. J Rehabil Med. 2008; 40(3): 185-189.
- 201Fivez T, Hendrickx A, Van Herpe T et al. An analysis of reliability and accuracy of muscle thickness ultrasonography in critically ill children and adults [published online March 9, 2015]. JPEN J Parenter Enteral Nutr.
- 202Puthucheary Z, Montgomery H, Moxham J, Harridge S, Hart N. Structure to function: muscle failure in critically ill patients. J Physiol. 2010; 588: 4641-4648.
- 203Abe T, Loenneke JP, Young KC et al. Validity of ultrasound prediction equations for total and regional muscularity in middle-aged and older men and women. Ultrasound Med Biol. 2015; 41(2): 557-564.
- 204Abe T, Kondo M, Kawakami Y, Fukunaga T. Prediction equations for body composition of Japanese adults by B-mode ultrasound. Am J Hum Biol. 1994; 6: 161-170.
- 205Takai Y, Ohta M, Akagi R et al. Applicability of ultrasound muscle thickness measurements for predicting fat-free mass in elderly population. J Nutr Heal Aging. 2014; 18(6): 579-585.
- 206Sanada K, Kearns CF, Midorikawa T, Abe T. Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults. Eur J Appl Physiol. 2006; 96(1): 24-31.
- 207Abe T, Dabbs NC, Nahar VK, Ford MA, Bass MA, Loftin M. Relationship between dual-relationship between dual-energy X-ray absorptiometry-derived appendicular lean tissue mass and total body skeletal muscle mass estimated by ultrasound. Int J Clin Med. 2013; 4: 283-286.
- 208Mourtzakis M, Wischmeyer P. Bedside ultrasound measurement of skeletal muscle. Curr Opin Clin Nutr Metab Care. 2014; 17(5): 389-395.
- 209Mayans D, Cartwright MS, Walker FO. Neuromuscular ultrasonography: quantifying muscle and nerve measurements. Phys Med Rehabil Clin N Am. 2012; 23: 133-148.
- 210Arbeille P, Kerbeci P, Capri A, Dannaud C, Trappe SW, Trappe TA. Quantification of muscle volume by echography: comparison with MRI data on subjects in long-term bed rest. Ultrasound Med Biol. 2009; 35(7): 1092-1097.
- 211Abe T, Loenneke JP, Thiebaud RS. Ultrasound assessment of hamstring muscle size using posterior thigh muscle thickness [published online November 3, 2014]. Clin Physiol Funct Imaging.
- 212Abe T, Kawakami Y, Kondo M, Fukunaga T. Comparison of ultrasound-measured age-related, site-specific muscle loss between healthy Japanese and German men. Clin Physiol Funct Imaging. 2011; 31: 320-325.
- 213Seymour JM, Ward K, Sidhu PS et al. Ultrasound measurement of rectus femoris cross-sectional area and the relationship with quadriceps strength in COPD. Thorax. 2009; 64(5): 418-423.
- 214Takai Y, Katsumata Y, Kawakami Y, Kanehisa H, Fukunaga T. Ultrasound method for estimating the cross-sectional area of the psoas major muscle. Med Sci Sports Exerc. 2011; 43: 2000-2004.
- 215Tillquist M, Kutsogiannis DJ, Wischmeyer PE et al. Bedside ultrasound is a practical and reliable measurement tool for assessing quadriceps muscle layer thickness. JPEN J Parenter Enteral Nutr. 2013; 38(7): 886-890.
- 216Toomey C, McCreesh K, Leahy S, Jakeman P. Technical considerations for accurate measurement of subcutaneous adipose tissue thickness using B-mode ultrasound. Ultrasound. 2011; 19(2): 91-96.
- 217Heyland D. Clinical evaluation research unit. 2015. http://www.criticalcarenutrition.com/index.php?option=com_content&view=article&id=182&Itemid=79. Accessed April 23, 2015.
- 218Itobi E, Stroud M, Elia M. Value of multifrequency bioelectrical impedance in assessing fluid disturbances in patients undergoing major abdominal surgery. Eur J Gastroenterol Hepatol. 1997; 9(8): 9-10.